Biocomputational analysis of evolutionary relationship between toll-like receptor and nucleotide-binding oligomerization domain-like receptors genes
نویسندگان
چکیده
AIM The active domains (TIR and NACHT) of the pattern recognition receptors (PRRs: Toll-like receptors [TLRs] and nucleotide-binding oligomerization domain [NOD]-like receptors [NLR], respectively) are the major hotspots of evolution as natural selection has crafted their final structure by substitution of residues over time. This paper addresses the evolutionary perspectives of the TLR and NLR genes with respect to the active domains in terms of their chronological fruition, functional diversification, and species-specific stipulation. MATERIALS AND METHODS A total of 48 full-length cds (and corresponding peptide) of the domains were selected as representatives of each type of PRRs, belonging to divergent animal species, for the biocomputational analyses. The secondary and tertiary structure of the taurine TIR and NACHT domains was predicted to compare the relatedness among the domains under study. RESULTS Multiple sequence alignment and phylogenetic tree results indicated that these host-specific PRRs formed entirely different clusters, with active domains of NLRs (NACHT) evolved earlier as compared to the active domains of TLRs (TIR). Each type of TLR or NLR shows comparatively less variation among the animal species due to the specificity of action against the type of microbes. CONCLUSION It can be concluded from the study that there has been no positive selection acting on the domains associated with disease resistance which is a fitness trait indicating the extent of purifying pressure on the domains. Gene duplication could be a possible reason of genesis of similar kinds of TLRs (virus or bacteria specific).
منابع مشابه
In silico Study of Toll-Like Receptor 4 Binding Site of FimH from Uropathogenic Escherichia coli
Introduction : The innate immune system as the first line of defense against the pathogens recognizes pathogen-associated molecular patterns (PAMPs) by Toll-Like Receptors (TLRs). Interaction of bacterial PAMPs by TLRs results in activation of innate and acquired immunity. FimH adhesin, a minor component of type 1 fimbriae encoded by Uropathogenic Escherichia coli (UPEC) is a PAMP of TLR4 tha...
متن کاملP-33: Expression of Toll-Like Receptor 2-3 Genes in Human Sertoli Cells
Background: Toll-like receptors (TLRs) constitute a major part of innate immunity, which can distinguish pathogen associate molecular pattern. Sertoli cells create a special immunological niche that protects somniferous tubules from auto antigens and pathogens. These cells are the only somatic cells in somniferous that protect testis cells against pathogens. The purpose of this study was to eva...
متن کاملAssociation of toll-like receptors 2 and 6 polymorphism with clinical mastitis and production traits in Holstein cattle
Mastitis is a costly disease of dairy cattle as it causes a loss in milk yield and milk quality in affected cows. Toll-like receptor (TLR) genes play a role in the host response to a variety of organisms including those inducing mastitis. In the present study, we investigated the polymorphism of TLR2, 4, 6 and 9 genes in Holstein cattle and ...
متن کاملP-225: Gene Variations of Toll-Like Receptor 3 in Endometriosis
Background: Endometriosis is a common gynecologic disorder that is characterized by the ectopic growth of endometrial tissue. Recently, endometriosis has been alternatively described as an immune, genetic and hormonal disease caused by exposure to environmental factors. Toll-like receptor 3 (TLR3) comprises a family of receptors through directly recognizing exogenous and endogenous ligands play...
متن کاملNucleotide-binding oligomerization domain containing-like receptor family, caspase recruitment domain (CARD) containing 4 (NLRC4) regulates intrapulmonary replication of aerosolized Legionella pneumophila
BACKGROUND Legionella pneumophila (Lp) flagellin activates signaling pathways in murine macrophages that control Lp replication. Nucleotide-binding oligomerization domain (NOD) containing-like receptor (NLR) family, caspase recruitment domain (CARD) containing 4 (NLRC4) and Toll-like Receptor (TLR5) both recognize Lp flagellin in vitro, but whether these two receptors play redundant or separate...
متن کامل